

UNIT - I

Chapter 1: Advanced Vapour Compression Cycles

Review of vapour compression cycle, Trans-critical cycle and their types retical treatment, Ejector refrigeration cycle and their types. Presentation of cycle on P-h and T-s chart.

1.1	Review of vapour compression cycle1-1				
1.1.1	Standard Vapour Compression Refrigeration System (VCRS)1-1				
1.2	Analysis of Standard Vapour Compression Refrigeration System1-5				
1.3	Examples on Vapour Compression System1-6				
1.4	Trans-critical Cycle and it's				
	Retical Treatment1-12				
1.4.1	Introduction1-12				
1.4.2	Parallel Compression Trans-critical System 1-17				
1.4.3	Advantages of Trans-critical Cycle1-18				
1.4.4	Disadvantages of Trans-critical Cycle1-18				
1.5	Simple Trans-critical Refrigeration Cycle with Internal Heat Exchange Cycle1-18				
1.6	Introduction to Ejectors1-20				
1.6.1	Ejector Expansion Trans-critical Cycle (Ejector Refrigeration System with Additional Jet Pump)1-20				
1.6.2	R&D Challenges1-22				
1.6.3	Applications1-22				
1.6.4	Types of Ejector Vapour Compression Systems1-22				
1.6.5	Vortex Tube Expansion Cycle1-23				
17	Evamples on Figster Defrigeration System 1-24				

UNIT - II

Chapter 2: Thermal Design of Refrigeration **System Components** 2-1 to 2-60

Compressor: Characteristic curves of reciprocating & Centrifugal compressors, sizing of reciprocating compressor **Evaporator**: Standards & Codes, Performance analysis of Dx evaporator, Condenser: Standards & Codes, air-cooled condenser, shell & tube condenser and evaporative condenser. Expansion **Devices:** Standards & Codes, Operating Characteristics, Liquid Charge in the Sensing Bulb, Hunting of Thermostatic Expansion Valve Cooling Tower: Types & design of cooling towers, cooling tower thermal performance, tower efficiency.

	,
2.1	Introduction to Compressors2-1
2.2	Classification of Compressors2-1
2.3	Effect of Clearance Volume, $V_{\mathbb{C}}$ 2-3
2.4	Single Acting Compressors2-3
2.5	Double Acting Compressors2-3
2.6	Two Stage Air Compressors2-3
2.7	A Centrifugal Compressor2-4
2.7.1	Advantages of Centrifugal Compressor over
	Reciprocating Compressor2-5
2.7.2	Disadvantages of Centrifugal Compressor over
	Reciprocating Compressor2-6
2.8	Air Capacity Rating of Compressors2-6
2.9	Sizing of Air Receivers2-6
2.10	Selection of Air Compressors2-7
2.11	Laws of Compression2-7
2.11.1	Performance Characteristics of Compressors 2-8
2.11.2	Performance Characteristics of Reciprocating and
	Centrifugal Compressor2-9
2.12	Examples on Compressors2-10
2.13	Condensers2-25
2.13.1	Heat Rejection Ratio2-25
2.13.2	Types of Condensers2-26
2.13.3	Heat Transfer in Condensers2-27

2.14	Expansion Devices2-35	3.1	Capacity Control in Reciprocating
2.14.1	Automatic or Constant Pressure		Compressors3-1
	Expansion Valve2-36	3.2	Capacity Control of Different Compressors 3-2
2.14.2	Hunting of Thermostatic Expansion Valve2-38	3.2.1	Capacity Control of Centrifugal Compressors 3-2
2.14.3	Application of Thermostatic	3.2.2	Capacity Control of Reciprocating Compressor 3-2
	Expansion Valves2-40	3.2.3	Capacity Control of Scroll Compressors3-4
2.14.4	Liquid Charge in Sensing Bulb2-40	3.2.4	Copper Tubing for Refrigerant Piping3-5
2.14.5	Capillary Tube and its Sizing2-41	3.2.4.1	Softer Copper Tubing3-5
2.15	Cooling Towers2-42	3.2.4.2	Rigid Copper Tubing3-5
2.15.1	Introduction2-42	3.2.5	Classification of Copper Tubing
2.15.2	Principle of Operation2-43		According to Dimensions3-6
2.15.3	Design Condition in Cooling Tower2-44	3.2.6	Piping Design for Reciprocating
2.15.4	Classification of Cooling Towers2-44		Refrigeration Systems3-7
2.15.5	Types of Direct Contact Cooling Towers2-46	3.2.7	Requirement for Piping Design for
2.15.6	Tower Efficiency2-49		Reciprocating Refrigeration Systems3-7
2.16	Evaporators2-49	3.3	Refrigerant Piping3-8
2.16.1	Classification of Evaporators2-49	3.3.1	Piping Limits3-8
2.16.2	Augmentation Techniques2-51	3.3.2	TXV Note for Refrigerant Piping3-8
2.16.3	Recirculation2-51	3.3.3	Equivalent Length for Different Refrigerant 3-9
2.16.4	Use of Wire Screens in D-X Evaporators2-52	3.3.4	Sizing of Liquid Line and Vapour Line3-11
2.16.5	Using Roughened Surfaces:	3.4	Fundamentals and Theory3-13
	Slipcevic Correlations2-53	3.4.1	Equivalent Length3-14
	UNIT - III	3.4.2	Pressure Drop3-15
Chapte	r 3 : Practical Aspects of Vapour	3.5	Line Sizing in Detail3-16
	Compression System 3-1 to 3-35	3.6	Sizing Hot Gas Discharge Lines3-26
Refrig	erant Piping : Copper Tubing, Piping Design for	3.6.1	Discharge Line Piping Details3-27
-	ocating Refrigeration Systems, Size of Copper Tube,	3.6.2	Sizing of Liquid Lines3-27
	eration Load, and Pressure Drop, Sizing Procedure,	3.7	Safety Controls3-28
Suction Line, Discharge Line (Hot-Gas Line), Liquid Line Capacity Controls: Capacity Controls of reciprocating, centrifugal and scroll compressors		3.7.1	Low Pressure and High Pressure Controls3-28
		3.8	Low Temperature Control3-30
Safety	Controls : Low-Pressure and High-Pressure	3.9	Frost Control3-30
	ols. Low-Temperature Control, Frost Control, Oil	3.10	Oil Pressure Failure Control3-31
	re Failure Control. Motor Overload Control.	3.11	Motor Overload Control3-31
-	r compression system balance : Performance	3.12	Vapour Compression System Balance3-32
	teristics of the condensing unit & compressor-	3.12.1	Balance Point of Compressor and

UNIT - IV

Chapter	4	:	Ventilation	and	Infiltration
---------	---	---	-------------	-----	--------------

4-1 to 4-29

Indoor Design Criteria and Thermal Comfort : Basic parameters, factors affecting thermal comforts, Comfort-Discomfort Diagrams, Indoor Temperature, Relative Humidity, and Air Velocity

Indoor Air Quality: Indoor Air Contaminants, Basic Strategies to Improve Indoor Air Quality,

Outdoor Design Conditions : Outdoor Air Requirements for Occupants, The Use of Outdoor Weather Data in Design, Outdoor Weather Characteristics and their Influence.

Ventilation for cooling: Natural ventilation, mechanical ventilation

Space air distribution : Design of air distribution systems, Types of air distribution devices : Airflow patterns inside Conditioned space : Stratified mixing flow : Cold air distribution: Displacement flow.

Spot cooling / heating : Selection of supply air outlets.

4.1	Requirements of Comfort Air Conditioning4-1
4.2	Biological Requirement of Air Supplied for Comfort Air Conditioning4-3
4.3	Indoor Parameters4-3
4.4	Colony Forming Units (CFU)4-4
4.5	Air-purification Methods4-5
4.6	Thermodynamics of Human Body (Metabolism of Human Body)4-6
4.7	Role of Clothing4-7
4.8	Human Comfort4-11
4.8.1	Factors Affecting Human Comfort4-11
4.8.2	Effective Temperature4-11
4.9	Indoor Air Quality4-12
4.9.1	Indoor Contaminants4-12
4.9.2	Ambient Environment Contaminants 4-13
4.9.3	Basic Strategies to Improve Indoor Air Quality 4-13
4.10	Outdoor Design Conditions4-14
4.10.1	Outdoor Air Requirements for Occupants 4-14
4.10.2	The Use of Outdoor Weather Data in Design 4-15

4.10.3	Outdoor Weather Characteristics and their Influence (Effect)4-15
4.11	Ventilation for Cooling4-15
4.11.1	Natural Ventilation4-16
4.11.2	Mechanical Ventilation4-17
4.12	Space Air Distributions4-17
4.12.1	Design of Air Distribution Systems4-17
4.12.2	Types of Air Distribution Devices4-18
4.12.3	Air Flow Pattern Inside the Conditioned Space4-20
4.12.4	Stratified Mixing Flow4-21
4.12.5	Cold Air Distribution System4-21
4.12.6	Displacement Flow4-22
4.13	Spot Cooling/Heating4-22
4.13.1	Spot Cooling4-22
4.13.2	Selection of Supply Air Outlets4-23
4.13.3	Spot Heating4-23
4.14	Comfort Discomfort Diagrams4-23
4.14.1	Causes of Discomfort4-24
4.14.2	Wind Effect4-24
4.14.3	Stack Effect4-25
4.14.4	Energy Conservation in Restaurant Air Conditioning in the Building4-26

UNIT - V

Chapter 5: **Heat Load Estimation in Building Structures**

5-1 to 5-34

Solar radiation, Heat gain through fenestrations, Space load characteristics, cooling load and coil load calculations, Overall heat transmission coefficient, air spaces, sol-air temperature, Decrement factor and time lag method,, Cooling Load Temperature Difference method (CLTD) or Equivalent Temperature Differential (ETD), detailed calculation procedure using CLTD method, Total heat balance.

Energy-efficient and cost-effective measures for building envelope, Concept of ECBC

5.1	Solar Radiation5-1
5.2	Heat Gain Through Fenestrations 5-1

5.3	Estimation of Heat Gain Through
	Fenestration5-2
5.4	Effect of External Shading5-4
5.5	Space Load Characteristics5-5
5.5.1	Space Room and Zone5-5
5.5.2	Convective and Radiative Heat5-6
5.5.3	Space and Equipment Loads5-6
5.6	Cooling Load and Cooling Load Calculations5-7
5.6.1	External Cooling Loads5-7
5.6.2	Internal Cooling Loads5-8
5.7	Components of Cooling Coil Load5-8
5.8	Difference between Cooling Load and Cooling
	Coil Load5-9
5.9	Overall Heat Transmission Coefficient5-9
5.10	Time Lag and Decrement Factor 5-10
5.11	One-dimensional Steady State Heat Transfer
	Through Buildings5-10
5.11.1	Homogeneous Wall5-11
5.11.2	Non Homogeneous Walls5-12
5.11.3	Air Spaces 5-14
5.11.4	Multi-layered, Composite Walls 5-14
5.12	Unsteady Heat Transfer Through Opaque Walls
	and Roofs 5-15
5.12.1	Sol-air Temperature5-15
5.13	One-dimensional, Unsteady Heat Transfer
- 4 4	Through Building Walls and Roof5-16
5.14	Decrement Factor and Time Lag5-17
5.15	Empirical Methods for Cooling Load
- 46	Estimation
5.16	Equivalent Temperature Differential (ETD) or Cooling Load Temperature Difference (CLTD)
	Method (Detailed Calculation Procedure) 5-21
5.17	Solved Examples 5-24
5.18	Total Heat Balance 5-29
5.18.1	Elements of Total Heat Balance Model5-30
5.18.2	Heat Balance Processes for General Zone5-32
5.19	Energy Efficient and Cost-effective Measure for
	Building Envelope 5-33
5.19.1	No Cost and Low Cost Energy Efficiency
	Measure

5.19.2	Medium Cost Energy Efficiency5-33
5.19.3	Implementation of Capital Intensive Measure5-33
5.20	Concept of ECBC (Energy Conservation Building
	Code)5-33

UNIT - VI

Chapter 6: Advanced Air Conditioning Systems 6-1 to 6-24

Desiccant-Based Air Conditioning Systems
Introduction, Sorbents & Desiccants, Dehumidificatio
Liquid Spray Tower, Solid Packed Tower, Rota
Desiccant Dehumidifiers, Hybrid Cycles, Solid Desiccan
Air Conditioning (Theoretical treatment)
Evaporative-Cooling Air Conditioning Systems, Therm
Storage Air Conditioning Systems, Clean-Room A
Conditioning Systems, Radiant cooling. (Theoretic
treatment)
Heat Pump Systems: Heat Pump Cycle, different hea
pump Circuits.

Pump	Circuits.	
6.1	Desiccant Based Air Conditioning Systems	6-1
6.1.1	Introduction	6-1
6.1.2	Liquid Desiccant System	6-2
6.1.3	Advantages of Liquid Desiccants	6-2
6.1.4	Limitations of Liquid Desiccants	6-2
6.1.5	Solid Desiccant Refrigeration (Cooling) System	6-2
6.2	Dehumidification Unit	6-4
6.2.1	Vertical Liquid Spray Towers	6-4
6.3	Two Stage Dehumidification Unit	6-5
6.3.1	Dehumidifier Core Packing Material	6-6
6.3.2	Regenerator Unit	6-6
6.3.3	Sorbents	6-7
6.4	Solid Packed Tower	6-7
6.4.1	Advantages of Solid Packed Tower	6-8
6.4.2	Limitations of Solid Packed Tower	6-8
6.5	Rotary Desiccant Dehumidifier	6-8
6.5.1	Desiccant Wheel	6-9
6.6	Hybrid Cycles	6-9

•	×	7	_
₹	3	c	7
7	╮	r	7

6.6.1	Advantages of Hybrid Cycles (Systems)6-10	6.8.3.3	Figure of Merit (FOM)6-16
6.7	Evaporative Cooling/Air	6.9	Radiant Air Conditioning System6-16
	Conditioning Systems6-10	6.10	Heat Pump Systems6-17
6.7.1	Direct Evaporative Cooling Systems6-10	6.10.1	Introduction6-17
6.7.2	Indirect Evaporative Cooling (Air	6.10.2	Heat Pump System with Heat Pump Circuit
	Conditioning) 6-11		(Heat Pump Cycle)6-18
6.7.3	Multistage (Two Stage) Evaporative	6.10.3	Different Heat Pump Circuits6-18
	Cooling System6-12	6.10.3.1	Air to Air Design6-18
6.7.4	Advantages of Evaporative Cooling Systems 6-13	6.10.3.2	Water to Air Design6-19
6.7.5	Limitations of Evaporative Cooling Systems 6-13	6.10.3.3	Air to Water Design6-20
6.8	Thermal Storage Air Conditioning Systems 6-13	6.10.3.4	Water to Water Design6-21
6.8.1	Ice-on Coil, Internal Melt Ice Storage Systems 6-14	6.10.3.5	Air to Liquid Design6-21
6.8.2	Ice Storage Tank6-15	6.11	Clean Room Systems6-22
6.8.3	Chilled Water Storage Systems6-15	>	Multiple Choice Questions (MCQ's)M-01-M-19
6.8.3.1	Stratified Chilled Water Storage Systems6-15		
6.8.3.2	Loss of Cooling Capacity During Storage6-16		

